
Journal of Computational Physics 210 (2005) 421–438

www.elsevier.com/locate/jcp
Probabilistically induced domain decomposition methods
for elliptic boundary-value problems

Juan A. Acebrón a, Maria Pia Busico b, Piero Lanucara b, Renato Spigler c,*
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Abstract

Monte Carlo as well as quasi-Monte Carlo methods are used to generate only few interfacial values in two-dimen-

sional domains where boundary-value elliptic problems are formulated. This allows for a domain decomposition of the

domain. A continuous approximation of the solution is obtained interpolating on such interfaces, and then used as

boundary data to split the original problem into fully decoupled subproblems. The numerical treatment can then be con-

tinued, implementing any deterministic algorithm on each subdomain. Both, Monte Carlo (or quasi-Monte Carlo) sim-

ulations and the domain decomposition strategy allow for exploiting parallel architectures. Scalability and natural fault

tolerance are peculiarities of the present algorithm. Examples concern Helmholtz and Poisson equations, whose prob-

abilistic treatment presents additional complications with respect to the case of homogeneous elliptic problems without

any potential term and source.
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1. Introduction

It is well known that the solution to boundary-value problems for certain linear partial differential equa-

tions admits a probabilistic representation, and that this can be taken, in principle, as a basis for compu-

tation. Consider the elliptic boundary-value problem
Lu� cðxÞu ¼ f ðxÞ in X; ujoX ¼ g; ð1Þ
where X � Rd, and L denotes a linear elliptic operator, say L = aij(x)oioj + bi(x)oi (using the summation con-

vention), with continuous bounded coefficients, c(x) P 0 and bounded continuous, continuous boundary

data g, source term f in L2(X), and oX Lipschitz continuous. The probabilistic representation of the solution

is given by
uðxÞ ¼ EL
x gðbðsoXÞÞe�

R soX

0
cðbðsÞÞ ds �

Z soX

0

f ðbðtÞÞe�
R t

0
cðbðsÞÞ ds

dt
� �

; ð2Þ
see, e.g. [1,2], where soX is the first exit (or hitting) time of the path b(Æ) started at x when oX is crossed. b(Æ)
is the stochastic process associated to the operator L, and the expected values are taken with respect to the

corresponding measure. When L is the Laplace operator, b(Æ) reduces to the standard d-dimensional Brown-

ian motion, and the measure reduces to the Gaussian measure. In general, the process b(Æ) is the solution to

a stochastic differential equation (SDE) of the Ito type related to the elliptic partial differential equation in

(1), namely
db ¼ bðxÞ dt þ rðxÞ dW ðtÞ. ð3Þ

Here, W(t) represents d-dimensional standard Brownian motion (also called Wiener process); see [2,3],

e.g., for generalities, and [4–6] for the related numerical treatment. As is known, the solution to (3) is a

stochastic process, b(t,x), where x, which usually is not indicated explicitly in probability theory, de-

notes the ‘‘chance variable’’, ranging on a suitable abstract probability space. The drift, b, and the dif-

fusion, r, in (3), are related to the coefficients of the elliptic operator in (1) by b = (bi)
T, and rrT = a,

with r = (rij), a = (aij).

We shall confine ourselves to two-dimensional problems, hence we shall write (x,y) instead of the vector
variable x in all examples in Section 4 below.

The Monte Carlo approach, based on the numerical computation of the solution to problem (1) through

the representation formula in (2), is considered very inefficient, at least in low dimension. It can be viewed

as the last resource to be exploited, for instance when the boundary of the domain has a complicated geom-

etry, which fact rules out the adoption of any other deterministic algorithm [7]. In fact, one of the advan-

tages of Monte Carlo methods is that they do not require any structured grid.

In the companion paper [8], we have proposed a domain decomposition approach for the numerical

treatment of rather general linear elliptic boundary-value problems. The idea was to compute only few inter-

facial values inside the domain, X, from formula (2), and interpolate on the points where the values above

have been obtained. These nodes are viewed as located on suitable interfaces inside the domain, irrespective

of the fact that such interfaces are physical or not. Then, a continuous approximation of the trace of solu-

tions can be constructed, and this will be used as boundary data for the subdomains. Full decoupling into

as many subdomains as we wish can be realized in this way. The key idea of using a probabilistic represen-

tation of solutions to elliptic problems only to accomplish a preliminary domain decomposition, was first

proposed in [9], and later in [10].

In [8], however, only homogeneous elliptic equations without potential terms and sources were consid-
ered in the numerical examples. In fact, the representation formula in (2) holds even in the more general

case of Eq. (1). In this paper, we cope with the new difficulties which may arise from the presence of po-

tential terms, like c(x)u, as well as of source terms, like f(x). While the basic machinery developed here
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is the same as there, such new terms require estimating first exit times besides computing first exit points, as

well as using the entire paths due to the quadrature.

This method can be called a ‘‘probabilistic domain decomposition’’ (PDD) method. We stress that it can

fully exploit parallel architectures. In fact, (i) it implements a domain decomposition algorithm; (ii) every

realization (or path) of the stochastic process starting at every point can be simulated independently (if
we generate N sample paths at m points, we can use up to mN independent processors). Such a degree

of parallelization is compatible with the use of possibly different and even geographically distant processors

(grid computing, heterogeneous computing) and/or clusters of them. This algorithm is also naturally fault

tolerant, a property whose demand is becoming increasingly important, in view of machines working in the

petaflops regime, equipped with hundreds of thousands or millions of processors [11].

A remarkable improvement of the performance of the classical Monte Carlo method [12], which is

based on the so-called pseudorandom numbers (which mimic the ideal random numbers), can be achieved

using, instead, sequences of quasi-random numbers [13–16]. The corresponding strategy is called quasi-
Monte Carlo, and when using such sequences in our approach, the method will be called a ‘‘quasi-

probabilistic domain decomposition’’ (quasi-PDD) method. Such sequences are actually deterministic and

their elements are uniformly distributed. Unfortunately, they are subject to a certain degree of correla-

tion. Sequences of quasi-random numbers have been applied in the past with some success to the numer-

ical evaluation of high-dimensional integrals [17], in particular in problems of financial mathematics [18].

Other applications have been made to the generation of quasi-random paths of stochastic processes in

[19,20], to the Boltzmann equation [21], and to a simple system of diffusion equations in Rd [22]. A failure

in applying them to the solution of stochastic differential equations has been pointed out in [23], but it
has been shown in [24] that a careful implementation allows for a successful use of them. Indeed, a kind

of scrambling of the quasi-random numbers at each time step, namely a suitable reordering strategy, has

been proved to be effective.

In Section 2, some generalities are discussed, while in Section 3 various sources of numerical error which

affect the PDD and the quasi-PDD methods are pointed out. Numerical examples are shown in Section 4,

where the efficiency of the PDD and of quasi-PDD algorithms is illustrated. In the final section, we sum-

marize the high points of the paper.
2. Deterministic versus probabilistic domain decomposition

Solving a boundary-value problem, for instance a Dirichlet problem, for a given elliptic partial differen-

tial equation on a given domain, X, by domain decomposition, consists of dividing X into a number of sub-

domains and computing then the solution on each of such subdomains on separate processors, see, e.g.

[25,26]. However, the boundary-value problems above are global in nature, so that the solution on the inter-

faces internal to X, that one would like to use as boundary data for the sub-problems, cannot be computed
in advance, before solving the full problem.

Approximations of interfacial values are constructed imposing continuity of solutions and of certain

derivatives across the interfaces. This requires solving linear algebraic subsystems by iterative processes,

typically characterized by high condition numbers [26], especially in methods without overlap (iterative sub-

structuring methods).

It is claimed that using parallel computers with a few hundred processors and with 106–107 variables, the

global cost of the method is dominated by that spent by local solvers. The future generation of parallel ma-

chines however are designed with hundreds of thousands or even millions of processors, in which case inter-
communication across the numerous subdomains might dramatically affect the overall performance. Full

decoupling of the original problem into an arbitrary number of subdomains is therefore highly desirable,

and this can be achieved by a probabilistic domain decomposition method.
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By means of a probabilistic representation of solutions, numerical approximations can be generated at

every point inside X, without solving the full problem. The basic idea is to compute only a few values of

the solution on certain chosen interfaces, and then interpolate to get continuous approximations. These

can be used as boundary values to decouple the problem into sub-problems, see Fig. 1. Each of such

sub-problems can then be solved independently on a separate processor. Clearly, neither communication
among the processors nor iteration across the interfaces is needed.

It should be noticed that even though a rather poor approximation can be expected on the interfaces due

to the Monte Carlo method, numerical errors inside each subdomains become smaller due to the discrete

maximum principle.

In closing this section, we stress that the PDD algorithm is characterized by a high degree of parallelism,

because it combines the main advantage of the domain decomposition strategy with the inherent parallelism

of the Monte Carlo method. The PDD algorithm can be shown to be characterized by a speed-up

Sp ¼ T 1=T p � ðT 1=2kTMCÞ
ffiffiffi
p

p
, as p ! 1. Here, T1 is the time spent for solving sequentially problem (1)

on the entire domain, Tp is the time required to solve it in parallel with p processors, k is the number of

points on each interfaces, and TMC is the time required for computing by the Monte Carlo simulation a

single interfacial value. This result has been established in [8], where numerical examples simpler than here

were presented, but also holds in the present case. In addition, the PDD algorithm is scalable, and also

enjoys the intriguing feature of being naturally ‘‘fault tolerant’’ [11]. In fact, clearly, a failure of a small per-

centage of processors in the course of the Monte Carlo computation of the nodes would not force the entire

code to stop, but only a modest additional error would be produced. On the other hand, if some processors

fail when the local solvers are being runned to compute the solution on the various subdomains, the output
will be incomplete but correct. The only missing results will be those corresponding to the processors which

have failed.
3. The PDD algorithm and the various sources of numerical error

The PDD algorithm that has been developed in [8] as well as in this paper, is a hybrid numerical method

in that it consists of both, probabilistic and deterministic parts. Consequently, it is affected by several kinds
Ω
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Fig. 1. Sketchy diagram illustrating the numerical method, splitting the initial domain X into four subdomains, X1, X2, X3, X4.
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of errors, some of which are statistical in nature. The core of the algorithm is given by numerical approx-

imation of a few internal values to be thought of as pivots for interpolation. Interpolation and subsequent

solution in the subdomains by deterministic solvers are standard ingredients, and we shall comment later on

such issues. Concentrating on the numerical evaluation of the nodal values, we observe that a number of

numerical errors can be singled out. First of all, expected values to be computed on the basis of the repre-
sentation formula in Eq. (2) have to be replaced by arithmetic averages. This yields the usually dominating

error made in Monte Carlo simulations, which is of a statistical nature and of order N�1/2, N being the sam-

ple size. Using quasi-random number sequences, instead of pseudorandom sequences, this error is deter-

ministic and of order N�1logd
��1N , d* denoting the ‘‘effective’’ space dimension. Concerning the

dependence of such an error on dimension, it is important to emphasize that the effective space dimension,

d*, can be reduced dramatically in practice [24]. A straightforward implementation requires that as many

independent quasi-random numbers as the number of steps needed to exit the boundary, times the geomet-

ric dimension, is used, and this is d*. Clearly, a large value of d* appreciably increases the error, unless N is
taken very large, destroying the advantage of using quasi-random numbers instead of pseudorandom num-

bers. However, a more favorable alternative does exist. In this paper, as well as, e.g. in [8,20,22,24], the

value d* can be replaced by the geometric dimension, d. In fact, only d independent sequences of quasi-

random numbers, one for each coordinate, can be used, provided that a reordering strategy is adopted

to destroy the inherent correlations.

Moreover, approximating paths of the stochastic process, b(t), has to be obtained solving numerically

the SDE in Eq. (3). The truncation error involved here depends on the method we choose, for instance

the Euler scheme, Taylor-based schemes, or the exponential timestepping scheme. Another source of errors
that might dominate the overall error occurs in the evaluation of first exit points and times. In fact, the first

exit time, soX, as well as the related first exit point, b(soX), appears explicitly in Eq. (2). It is worth noting

that, other than in the case of homogeneous equations without potential and sources considered in [8], com-

puting first exit times (in addition to first exit points) is now required. Furthermore, numerical quadrature

now enters Eq. (2) again owing to the nonzero coefficients c(x) and f(x) in Eq. (1). Such novel aspects

encountered in the present paper needs special care, and we may expect that they produce additional errors.

In Fig. 2, the dependence of the numerical error on N is given in a logarithmic scale. Such a plot provides

evidence of the possibility of controlling the dimensionally issue.

3.1. The numerical errors in computing nodal values

The essential part of our method consists of obtaining numerical approximations of the solution to Eq.

(1). In the numerical evaluation of the representation formula (2), set, for short, s = soX, and:
uðxÞ ¼ vðxÞ þ wðxÞ; ð4Þ
�f ¼ �f ; ð5Þ

wðbð�Þ; tÞ ¼ e
�
R t

0
cðbðsÞÞ ds

. ð6Þ
Thus, (2) becomes
uðxÞ ¼ vðxÞ þ wðxÞ ¼ EL
x ½gðbðsÞÞwðbð�Þ; sÞ� þ EL

x

Z s

0

�f ðbðtÞÞwðbð�Þ; tÞ dt
� �

. ð7Þ
Moreover, we assume that c(Æ) P 0 and that c(Æ), g(Æ), and f(Æ) are bounded and Lipschitz continuous, with
Lipschitz constants Lc, Lg, and Lf, respectively. Note that L�f ¼ Lf .

Consider first the numerical approximation of v(x). We want to approximate
EL
x ½gðbðsÞÞwðbð�Þ; sÞ�;
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Fig. 2. Numerical error made in Example A for several values of N at the point (0.3,0.5). The marked points denote the solution

obtained by the quasi-Monte Carlo method, while the dashed line is obtained fitting the data by a linear regression method. The time

step used is Dt = 10�4.
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but, in practice, we shall compute instead
1

N

XN
j¼1

gðxjðtjÞÞe�I½xjð�Þ;tj�;
where xj(Æ) is an approximation to the jth path bj(Æ), tj an approximation to sj, and e�I an approximation of
the term w by means of a numerical quadrature formula. In fact, in practice we can only simulate a finite

number, say N, of realizations of the paths b(t) ” b(t,x), x denoting the ‘‘chance variable’’, customarily

omitted in all formulae. While the ‘‘label’’ x runs on some abstract probability space, taking infinitely many

values, we can only generate N paths, bj(t), j = 1,2, . . . ,N. The same can be said concerning the first exit

times, s ” s(x), which we shall denote by sj, j = 1,2, . . . ,N. Besides, both, the paths bj(t) and sj will be
approximated numerically, and xj(t) and tj, will denote, respectively, their approximations. The xj(t) are ob-

tained integrating numerically the underlying SDEs, hence the discrepancy between bj(t) and xj(t) is the

truncation error.
In order to estimate the overall error, say eN, made computing v(x), we can write:
eN ¼ eð1ÞN þ eð2ÞN þ eð3ÞN þ eð4ÞN ; ð8Þ

where

1.
eð1ÞN ¼ EL
x ½gðbðsÞÞwðbð�Þ; sÞ� �

1

N

XN
j¼1

gðbjðsjÞÞwðbjð�Þ; sjÞ; ð9Þ
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2.
jeð2ÞN j 6 1

N

XN
j¼1

jgðbjðsjÞÞ � gðxjðsjÞÞje�
R sj

0
cðbjðsÞÞ ds þ 1

N

XN
j¼1

jgðxjðsjÞÞj e�
R sj

0
cðbjðsÞÞ ds � e

�
R sj

0
cðxjðsÞÞ ds

����
����

6
1

N
Lg

X
j

jbjðsjÞ � xjðsjÞj þmax jgjLc
1

N

X
j

Z sj

0

jbjðsÞ � xjðsÞj ds

� 1

N
Lg

X
j

jejtrunc.ðsjÞj þmax jgjLc
1

N

X
j

Z sj

0

jejtrunc.ðsÞj ds 6 ½Lg þ Lc max jgj � hsji� � etrunc.; ð10Þ
where we set hsji ¼ N�1
P

js
j, the average value of the exit times;

3.
jeð3ÞN j 6 1

N

XN
j¼1

jgðxjðsjÞÞ � gðxjðtjÞÞje�
R sj

0
cðxjðsÞÞ ds þ 1

N

XN
j¼1

jgðxjðtjÞÞj e�
R sj

0
cðxjðsÞÞ ds � e

�
R tj

0
cðxjðsÞÞ ds

����
����

6 Lg
1

N

XN
j¼1

Lxj jsj � tjj þmax jgj �max jcj 1
N

XN
j¼1

jsj � tjj

6 Lg max
j

Lxj þmax jgj �max jcj
� �

�max
j

jsj � tjj; ð11Þ
4.
jeð4ÞN j 6 1

N

XN
j¼1

jgðxjðtjÞÞj e�
R tj

0
cðxjðsÞÞ ds � e�I ½cðxjð�ÞÞ;tj�

����
����

6 max jgj 1
N

XN
j¼1

Z tj

0

cðxjðsÞÞds� I ½cðxjð�ÞÞ; tj�
����

���� 6 max jgj � e0quadr.; ð12Þ
where e0quadr. denotes the maximum error with respect to j, made in the numerical quadrature of c(xj(s)).

Note that eð1ÞN ¼ OðN�1=2Þ when classical Monte Carlo simulations are conducted, while it is
OðN�1logd

��1NÞ when quasi-Monte Carlo methods are implemented. It should be observed that no attempt

of approximating continuous paths of the underlying stochastic processes is made using quasi-random num-

bers. In fact, the representation formula (2) can be interpreted, rather, as taking an average of a certain ran-

dom variable. Conceptually, there is no difference with respect to the case when high-dimensional integrals

are computed upon generation of quasi-random sequences, see, e.g. [19]. On the other hand, some authors

did use quasi-random sequences to obtain approximate solutions to partial differential equations simulating

quasi-random paths of continuous stochastic processes, as it was done here, see for instance [19,22,27,28], to

quote just a few. In [27], it was shown that simulating quasi-random walks can be advantageous even to
solve certain nonlinear equations. A serious problem can be found, instead, in the potentially high value

of the effective dimension, d*. In fact, in the present simulations, a (relatively) large number of discrete

time-steps to be used to exit the boundary implies a correspondingly high dimension. On the one hand, this

increases the exponent of the logarithmic factor in the numerical error, and, on the other hand, it produces

unwanted correlations. A scrambling strategy, such as reordering, has been proven, however, to be effective

in destroying such correlations. This has been done successfully in the literature by a few authors, see, e.g.

[15,22,24]. In [8,24], it was shown that a careful use of only two strings of quasi-random numbers suffices,

hence d* = 2 could be used there. No question like this arises obviously using pseudorandom numbers.



428 J.A. Acebrón et al. / Journal of Computational Physics 210 (2005) 421–438
The second error, eð2ÞN , is due to the truncation error made approximating numerically the path bj(t) by
xj(t). It will be, e.g., of order of O(Dt) when using a Euler scheme in the weak sense, see [5]. In Eq. (10), Æsjæ
is an approximation of the mean exit time, Ex[s], whose value depends on the stochastic process and on the

domain. For instance, for the Brownian motion exiting from a ball of radius r, Ex[s] is known to be of order

r2 [2]. The third term, eð3ÞN , is due, clearly, to the error made approximating sj with tj. This error, which has
been proven to be of order

ffiffiffiffiffi
Dt

p
for the Euler scheme, might dominate, [29,30]. Hence, a special care should

be paid in the implementation to reduce it to order Dt.
The fourth term, eð4ÞN , finally, is a new kind of error, which did not appear in the previous paper [8]. In

fact, it comes from the numerical evaluation of the integrals in formula (2). Note that accomplishing the

numerical quadrature at the very beginning, one should consider the quadrature of the function c(bj(t)).
In this case, even for c smooth, the approximation would be of order

ffiffiffiffiffi
Dt

p
, due to the fact that the realiza-

tions bj(t) are merely Hölder continuous (with exponent 1/2). In the present approach, we face instead the

numerical quadrature of c(xj(t)), which is Lipschitz continuous, xj(t) being piecewise linear. Therefore, an
accuracy of order Dt can be achieved.

Concerning the evaluation of w(x), let write
EL
x

Z s

0

�f ðbðtÞÞwðbð�Þ; tÞ dt
� �

� 1

N

XN
j¼1

J ½�f ðxjð�ÞÞ; cðxjð�ÞÞ; tj� ¼ gð1ÞN þ gð2ÞN þ gð3ÞN þ gð4ÞN ; ð13Þ
where

1.
gð1ÞN ¼ EL
x

Z s

0

�f ðbðtÞÞwðbð�Þ; tÞ dt
� �

� 1

N

XN
j¼1

Z sj

0

�f ðbjðtÞÞwðbjð�Þ; tÞ dt; ð14Þ
which is of order of N�1/2 whenever classical Monte Carlo simulations are conducted, and of order of

N�1logd
��1N using quasi-Monte Carlo methods;

2.
jgð2ÞN j 6 1

N

XN
j¼1

Z sj

0

�f ðbjðtÞÞwðbjð�Þ; tÞ � �f ðxjðtÞÞwðxjð�Þ; tÞ
�� �� dt

6
1

N

XN
j¼1

Z sj

0

j�f ðbjðtÞÞ � �f ðxjðtÞÞj � jwðbjð�Þ; tÞj dtþ
1

N

XN
j¼1

Z sj

0

j�f ðxjðtÞÞj � jwðbjð�Þ; tÞ � wðxjð�Þ; tÞj dt

6 Lf
1

N

XN
j¼1

Z sj

0

jbjðtÞ � xjðtÞj dtþmax jf j 1
N

XN
j¼1

Z sj

0

dt
Z t

0

jbjðsÞ � xjðsÞj ds

6 ½Lf þmax jf j�hsji �max
j;s

jbjðsÞ � xjðsÞj; ð15Þ
which is of the order of the truncation error, say etrunc.; note that above 0 6 w(Æ, Æ) 6 1 for c(Æ) P 0, and

that L�f ¼ Lf and f may replace �f everywhere;

3.
jgð3ÞN j 6 1

N

XN
j¼1

Z sj

tj

jf ðxjðtÞÞje�
R t

0
cðxjðsÞÞ ds dt

�����
����� 6 max jf j �max

j
jsj � tjj; ð16Þ
which is of the order of es, the error made approximating the first exit times;
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4.
jgð4ÞN j 6 1

N

XN
j¼1

Z tj

0

jf ðxjðtÞÞj � e
�
R t

0
cðxjðsÞÞ ds � e�I ½cðxjð�ÞÞ;t�

����
���� dt

þ 1

N

XN
j¼1

Z tj

0

�f ðxjðtÞÞe�I½cðxjð�ÞÞ;t� dt � J ½�f ðxjð�ÞÞ; cðxjð�ÞÞ; tj�
����

����
6 max jf j �max

j
jtjj � e0quadr. þ e00quadr.; ð17Þ
where e00quadr. denotes the maximum error with respect to j made in the numerical quadrature of
�f ðxjðtÞÞe�J ½�f ðxjð�ÞÞ;cðxjð�ÞÞ;tj�.

Here, the same comments hold regarding the order of each type of error. The importance of all such
errors will be illustrated within the numerical examples presented in Section 4.

Other Monte Carlo-based numerical methods to solve elliptic boundary-value problems, which do not

imply solving SDEs, thus avoiding all kinds of errors described above, exist. For instance, the so-called

‘‘walking on the spheres’’ approach [34,35] belongs to this category. This method, however, which essen-

tially requires evaluating Green�s functions seems to be difficult to apply at least when a variable diffusion

coefficient enters the elliptic equation. Moreover, other sources of numerical error beset this type of algo-

rithms, e.g. the approximation of the boundary by the so-called e-strip, and the fact that constant diffusions

allow for using merely random walks instead of continuous stochastic processes.

3.2. Interpolation on the internal nodes

The next step of the algorithm is interpolation on the nodes computed in the previous section. Such

nodes can be thought of as laying on certain interfaces internal to the domain, X. Chebyshev interpolation

has been chosen in view of its global quasi-optimality [31]. Moreover, interpolating a given Ck function by

the nth degree Chebyshev polynomial of the first kind, the error is of order of n�k. In addition, the errors

affecting the nodal values themselves should be taken into account, because such values have been obtained
by the Monte Carlo or quasi-Monte Carlo simulations. Due to the stability properties of the Chebyshev

interpolation, such an error turns out to be under control. In particular, the Lebesgue constant involved

grows only logarithmically with n. In our algorithm, we only need, usually, n = 2 or 3 nodes on each inter-

face. The numerical error made in the interpolation part of the algorithm will be plotted in one example in

Section 4 below.

3.3. Local solvers

The final step of the algorithm consists of solving a number of independent subproblems, one in each

subdomain. In fact, the previous procedure allows for fully decoupling, and thus any deterministic algo-

rithm can be implemented to solve such subproblems. Since the focus of the algorithm is not on the local

solvers, we used the simplest method, i.e., finite differences (FDs). Jacobi iterations have then been con-

ducted to solve the ensuing linear algebraic systems. The termination criterion was chosen according to

the specific model example and to the number of subdomains.
4. Numerical examples

In this section, we present a few numerical examples to illustrate the probabilistically induced domain

decomposition algorithm developed in this paper. While the inherently high degree of parallelism allows
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for implementing an MPI code, we used the standard parallelization library called OpenMP, which is

designed for shared memory parallel architectures. The numerical tests have been conducted using a 16 pro-

cessor parallel machine, the IBM Power 3, with a peak performance of 24 GFLOPS. A comparison is made

in all examples below with a parallel version of a standard finite difference solver (PFD).

As a general remark, note that both the Monte Carlo simulation based on pseudorandom numbers in the
PDD method, and the solution based upon domain decomposition, allows for massively parallel computa-

tion. Unfortunately, one cannot exploit independently these two ingredients, the Monte Carlo simulations

and the domain decomposition strategy, both well suited to parallel computing, to further increase the

overall degree of parallelization. In fact, an interpolation process must take place after the Monte Carlo

generation of the pivotal values, before the computation on separate subdomains can start. In the quasi-

PDD method, however, the first part of the algorithm, mentioned above, does not allow for a full parallel

implementation. This is due to the fact that correlations among the quasi-random numbers within each se-

quence do exist, which destroy one of the key properties required for truly random number sequences. The
way out from such a drawback is to scramble the quasi-random sequences at each time step, which can be

realized by means of a suitable reordering strategy. Reordering consists in relabeling all realizations accord-

ing to their radial distances from the starting point, at each time step. While this mechanism has been

shown to be effective in many instances [8,20,22,24], it contrasts with the possibility of computing in parallel

all realizations.

In the following examples, the global error reduction observed passing from PDD to quasi-PDD is

depicted in contour plots, and the efficiency of PDD is compared with that achieved with PFD.

Example A. A contour plot showing the pointwise numerical error made solving the elliptic boundary-

value problems
uxx þ uyy � 5u ¼ 0 in X ¼ ð0; 1Þ � ð0; 1Þ ð18Þ

with the boundary condition
uðx; yÞjoX ¼ ðe2xþyÞoX ð19Þ

by PDD and quasi-PDD appears in [8]. We include it also here, however, for the purpose of illustration, see

Fig. 3.

Here, we also show the effect of a suitable boundary treatment, aimed at approximating accurately

the first exit times, see Fig. 4. The convergence of the numerical method as a function of the number of

realizations, N, is illustrated in Fig. 2. The numerical error has been computed at the points (x, 0.5), for

several values of equally spaced abscissae. In addition to using the Euler method with a constant time

step, we solved the underlying SDEs by an exponential timestepping method [32,33]. The latter method

is based on generating random time steps, picked up from an exponential distribution characterized by

a parameter k, with ÆDtæ = 1/k. A major advantage of such a procedure rests in the availability of an

explicit analytic formula for the hitting probability. Knowing this, allows for an accurate computation
of the first exit times. Note that this would be impossible for general problems if constant time step

schemes are adopted. In Fig. 4, the numerical errors at points (x, 0.5), obtained using the Euler method,

the exponential timestepping method, and the exponential timestepping method along with a suitable

boundary check, are shown. The stochastic process associated to Eq. (18) is actually a 2D standard

Brownian motion, for which the Euler scheme yields the exact solution for every Dt. Therefore, the

truncation error related to the Euler method applied to the corresponding SDEs vanishes. In addition,

adopting quasi-random number sequences with N = 104 realizations, the error inherent to the Monte

Carlo simulations is of order 10�4, and thus the overall dominating error is due to the error made
approximating exit times. Note that in Fig. 4, the results obtained using exponential timestepping

are (slightly) worse than those obtained by the Euler method because the latter is the exact solution



Fig. 3. Example A. Pointwise numerical error in: (a) the PDD algorithm; (b) the quasi-PDD algorithm with two nodal points on each

interface, evaluated by quasi-Monte Carlo; (c) the quasi-PDD algorithm with three nodal points on each interface. Parameters are

N = 104, Dx = Dy = 2 · 10�3, k = 103.
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of the discrete problem while the former is not. When, however, a boundary check is made by virtue of

explicit knowledge of the hitting probability, the corresponding results are by far better. Here, the value

k = 103 has been used.

In Fig. 2, the numerical error made solving Example A at the point (0.3,0.5) by quasi-Monte Carlo is

shown as function of the number of realizations, N. The numerical method used to solve the associated

SDE is the Euler method with a rather small time step, Dt = 10�4, in order to keep negligible the truncation
error as well as the error made in approximating exit times. Here, the curve obtained fitting the data is also

plotted, to display the dependence on the number of realizations. The fitted curve, obtained by a linear

regression method, turns out to be y = �0.9698x � 0.1808.
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Fig. 4. Numerical error made solving Example A. The quasi-Monte Carlo method was used at the points (x, 0.5). Parameters are

N = 104, Dt = 10�2, and k = 103.
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This example can also to exploited to illustrate the effect of the interpolation process on the (absolute

value of the) numerical error. In Fig. 5, such an error is plotted versus x, keeping y = 0.5 fixed, using
two, three, and four nodal points to interpolate by Chebyshev polynomials. The solution at both endpoints

is known from the boundary conditions. For this problem, the maximum interpolation error made using

three internal nodes reduces to about one-third of that obtained with two nodes. Using four nodes, it drops

to the same order of that on the quasi-Monte Carlo computed nodal values themselves. Increasing further

the number of nodes would be therefore useless.

Example B. Consider the 2D elliptic equation
uxx þ uyy ¼ 2 in X ¼ ð0; 1Þ � ð0; 1Þ; ð20Þ

subject to the boundary data
uðx; yÞjoX ¼ gðx; yÞ; ð21Þ

where g(x,y) = (3x2 + xy � 2y2)oX. The analytical solution of this problem is u(x,y) = 3x2 + xy � 2y2 in �X.

In Fig. 6, a contour plot of the pointwise numerical error made using PDD and the quasi-PDD algo-

rithms is shown. Note that the maximum error on the entire domain X is achieved on the interfaces,
and more precisely on the interpolation nodes. This agrees with the observation made in Section 2 about

the maximum principle. It should be remarked that the quasi-PDD algorithm outperforms the PDD algo-

rithm. As parameters, here, we used N = 104 realizations, Dx = Dy = 2 · 10�3 grid size, k = 103 timestepping

parameter (and thus an average time-step ÆDtæ = 10�3) to integrate the SDEs in Eq. (3).

Numerical experiments show that two nodes (that is four nodal points including the end points) suffice

on each of the two interfaces. The local solver is based on Jacobi iteration, where the termination criterion

has been chosen experimentally equal to 10�7.

The second column (PFD) in Table 1 shows the total computational time (in seconds) spent by the par-
allel finite difference algorithm using p = 4, 9, and 16 processors, which corresponds to 4, 9, and 16 subdo-

mains. The corresponding time spent by the PDD algorithm is shown in the third column. In the last two



Fig. 6. Example B. Pointwise numerical error in: (a) the PDD algorithm; (b) the quasi-PDD algorithm. Parameters are N = 104,

Dx = Dy = 2 · 10�3, k = 103.
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Fig. 5. Numerical error made solving the elliptic problem in Example A by quasi-Monte Carlo, computing two, three and four nodal
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columns, this quantity is split into two parts, i.e., that required by the Monte Carlo simulation, and that

needed by the local solvers. The two methods have been compared for about the same maximum error,

10�3. In both algorithms the CPU time decreases as p increases, and this trend is more dramatic in the

PDD algorithm. Moreover, the CPU time decreases for each given number of processors, passing from

PFD to PDD, and this behavior is more pronounced, when the number of processors is higher.



Table 1

Overall CPU time in seconds for Example B

Processors PFD PDDTotal PDDMonte Carlo PDDFD

4 435.273 104.039 3.602 100.097

9 215.420 28.996 4.004 24.722

16 204.365 11.776 3.160 8.362
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Example C. Consider the elliptic equation with constant diffusion and a variable source,
Fig. 7.

as in E
Du ¼ ð5x2 þ 5y � 4x� 2Þe�ðxþ2yÞ in X ¼ ð0; 1Þ � ð0; 1Þ; ð22Þ

with the boundary data
uðx; yÞjoX ¼ ½ðx2 þ yÞe�ðxþ2yÞ�oX; ð23Þ

the solution being given by u(x,y) = (x2 + y)e�(x+2y).

In Fig. 7 similar results to those of Example B are shown. The parameters used here are the same as

there.

We only comment the results of Table 2. Even though the problem is now more complex that the pre-

vious one, which is reflected by the longer CPU time appearing in Table 2, the PDD method still wins over

the PFD. Again, the quasi-PDD algorithm outperforms the PDD algorithm, see Fig. 7.

Example D. This example illustrates the performance of the numerical method in solving a general elliptic

equation with variable diffusion, variable drift, variable potential, and variable source term:
y2 þ 1

2
uxx þ

x2 þ 1

2
uyy þ xux þ y2uy � ðx3 þ y2Þu ¼ P cosð2xþ yÞ þ Q sinð2xþ yÞ in X

¼ ð0; 1Þ � ð0; 1Þ; ð24Þ
Example C. Pointwise numerical error in: (a) the PDD algorithm; (b) the quasi-PDD algorithm. Parameter values are the same

xample A.



Table 2

Overall CPU time in seconds for Example C

Processors PFD PDDTotal PDDMonte Carlo PDDFD

4 4654.939 1061.623 3.586 1057.493

9 2106.996 252.618 3.900 248.331

16 1368.333 93.689 3.104 90.246

Fig. 8.
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P ¼ 1þ xð4þ xþ 2x2Þ þ 2xy þ xð4þ xÞy2 þ y3;

Q ¼ �1
2
½�2þ x4 þ 2x5 þ 2x3y þ yð5� 4y þ 6y2Þ þ x2ð1þ y þ 6y2Þ�

ð25Þ
with the boundary data
uðx; yÞjoX ¼ ½ðx2 þ yÞ sinð2xþ yÞ�oX; ð26Þ

the solution being u(x,y) = (x2 + y) sin (2x + y).

Fig. 8 is analog to the previous ones and the parameter values used are the same as in Example B. Also in

this case, we show in Fig. 8 contour plots for the pointwise numerical errors. General comments can be

made as in the two previous example and, again, the same parameters have been used. As for the CPU

times in Table 3, note that all values are greater than in Example C, due to the higher complexity of the

present case.
Example D. Pointwise numerical error in: (a) the PDD algorithm; (b) the quasi-PDD algorithm. Parameters are the same as in

le B.

3

l CPU time in seconds for Example D

sors PFD PDDTotal PDDMonte Carlo PDDFD

9200.107 2087.947 3.492 2084.015

4098.381 489.684 3.872 485.484

2638.937 175.168 3.365 171.508
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Example E. In this example, the performance of the numerical method is tested in solving a general elliptic

equation of the Poisson type, having an analytically unknown solution. Consider the Dirichlet problem,
Fig. 9.

on eac

are the
uxx þ uyy ¼ esinðx
2þyÞ in X ¼ ð0; 1Þ � ð0; 1Þ; ð27Þ
with the boundary data
uðx; yÞjoX ¼ 0. ð28Þ

To quantify the numerical error, an accurate numerical solution was obtained solving problem (27) and (28)
by a multigrid method, instead of using an analytical form of the solution, as in all the previous examples.

Such analytical expression seems not to be available. The solution has been computed discretizing and solv-
Example E. Pointwise numerical error made with: (a) the PDD algorithm; (b) the quasi-PDD algorithm with two nodal points

h interface, evaluated by quasi-Monte Carlo; (c) the quasi-PDD algorithm with three nodal points on each interface. Parameters

same as in Example B.



Table 4

Overall CPU time in seconds for Example E

Processors PFD PDDTotal PDDMonte Carlo PDDFD

4 3381.015 628.936 5.443 623.178

9 2184.664 167.103 13.638 153.208

16 2879.030 83.374 24.213 58.915
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ing the second-order difference approximation by multigrid iterations, for a grid of size 769 · 769. To com-

pare it with the solution obtained by the PDD method, the solution above has been regrided to 500 · 500

using a cubic interpolation scheme. Both, the NAG routine d03edf and the free software MUDPACK [36],

have been used.

As in the previous examples, in Fig. 9 the contour plots are shown for the pointwise numerical error. In

Fig. 9(a) and (b), only two nodes on each interface have been used in the PDD as well as in the quasi-PDD

method, respectively. Fig. 9(c) shows the same quantity, obtained with three nodes on each interface (that

is, using six nodal points in total). Note that increasing the number of nodal points yields an overall reduc-

tion of the numerical error on the whole domain.

In Table 4, the CPU times required to solve the problem by the PFD and PDD method, are shown as a

function of the number of processors. As in the previous examples, the PDD method wins over the PFD

scheme, and the advantage in the CPU time is now even more striking.
5. Summary

Monte Carlo methods for solving Dirichlet problems for general linear elliptic equations have been

rarely considered so far, mostly due to their poor performance. In this paper, we have shown that such

a performance can be dramatically improved by a variety of new techniques. One of these consists of

accomplishing a domain decomposition based on computing by Monte Carlo only few interfacial values.
Thus, the degree of parallelism which characterizes the algorithm is increased. Another winning strategy

comes from adopting sequences of quasi-random numbers (instead of pseudorandom numbers), where spe-

cial care has to be paid, such as ‘‘reordering’’ at each time step. Finally, a suitable boundary treatment has

been shown to be essential, since the numerical error might otherwise dominate. An excellent way to accom-

plish the latter task turns out to be adopting an exponential timestepping method. Examples given here con-

cerned boundary-value problems for elliptic equations with variable coefficients, including a potential term

and sources, and thus for instance Helmholtz and Poisson equations. The algorithm developed here is also

characterized by scalability as the number of processors increases and by being naturally fault tolerant.
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[22] C. Lécot, F. El Khettabi, Quasi-Monte Carlo simulation of diffusion, J. Complexity 15 (1999) 342–359.
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